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Honey, | shrunk the target !
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all targets use KrF (0.25um) light with laser-spot zooming



The Shock Ignition approach: implode low-aspect-ratio targets
at low velocities and ignite with a separate ignition spike

In shock ignition

Conventional hotspot scheme, late-time

drive does double duty power spike

by assembling fuel and launches a shock
accelerating it to to ignite fuel at
sufficiently high velocity stagnation
(3x107 cm/s) for ignition =

The “main drive”
assembles the fuel
at low velocity
(~2-2.5x107 cm/s)
without creating a
central spark

Laser power

Time



1D simulations

1D parameter space scans for shock ignition have been done...
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2D low-mode simulation (¢/=2-8)

Low resolution simulations show that gain drops as surface
perturbation increases

* The low-mode simulations (860 x 64 pts)

» Use a spike power that is ~2x minimum required (750TW)
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2D High-resolution simulation (/=1-256)
High-resolutions simulation shows pellet survives 1xNIF spec

g
surface perturbation and produces gain ~60
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2D High-resolution simulation (/=1-256)

Three different sources have been simulated: outer and inner surface
perturbations and laser imprint. Outer surface perturbations are dominant

QR LD

0.49 um rms outer surface
(=0.125 pm rms in solid CH)

=
o
(=] (=]

Y (uM)

12.05 ns
after ignitor shock launch

-100 0
X (uM)

40

N
(=]

vy
O

12.43 ns
as burn begins

-20

-40

100

20080404130644

Y (uM)

-100

Y (uM)

1 um rms inner DT-ice surface

100

-100 100

0
X (uM)

20080525225850

-100

Y (umy

Y (uM)

100

-40

-100

-20

1THz ISI

0
X (uM)

0
X (uM)

20

100

40

20080414095118




2D High-resolution simulations (¢/=1-256)
Simulations show pellet survives typical 1-3 um inner surface perturbations

with near 1D yield
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12.05 ns
after ignitor shock launch

12.43 ns
as burn begins

The target is sensitive to the outer surface perturbation amplitude
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Current design constraints for shock ignition target

Outer surface finish: <0.125 pm rms in modes ¢ = 2-512
Inner surface finish: <4 um rms in modes ¢ = 2-512
beam aiming: <1%ry ??
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Shock ignition targets have been designed at 4 different energies
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Laser IFE gain curve
can be constructed by plotting runs at all scales

Composite Shock Ignition Gain Curve
using all 1D simulations
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Laser IFE gain curve
comparison to previous conventional ignition designs
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Laser IFE gain curve
comparison to FTF sub-MJ designs
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Laser IFE gain curve
comparison to Fast Ignition designs
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1D simulations

Increasing the compression power, without adding an ignition
spike, will eventually produce conventional central spark ignition
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The biggest constraint for shock ignition may be the high
convergence ratio
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The convergence ratios are lower for conventional ignition, but are similar to
marginal shock ignition cases (except they also use more laser energy)

High convergence ratios imply more stringent requirements for laser beam
alignment and power imbalances




How much more efficient is KrF light (0.25um) than
Nd:Glass light (0.35um)?
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The scale 1 target was simulated with frequency-tripled Nd:glass laser drive; the pulse
shape was changed so the drive pressure was as close as possible to the original.

The importance of zooming was also tested by turning it off.
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Summary

e Shock ignition targets have been designed and investigated at ~ 250kJ,
500 kJ, 800kJ and 1.2 MJ laser energies

« The target at 250kJ has been analyzed extensively and found to be robust
to:
low-mode and broad-spectrum NIF-spec surface perturbations
low-mode drive asymmetry
broad-spectrum ISI and inner-ice perturbations
however, all perturbation sources have not yet been simultaneously
simulated.

« gains can be much higher than conventional spark-ignition direct-drive
targets, and can be of order 100 particularly for KrF laser drive with
zooming.

« The high convergence ratio (smaller hot-spot) of the shock ignition
appears to make the shock ignition targets more sensitive to low-mode
perturbations

« There is a significant advantage in using zooming and shorter wavelength
laser light
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